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Problem # 1:
Find the electric field a distance from the center of a spherical surface of
radius , which carries a uniform charge density .

z
R 

 Direction of Electric field:  Along z axis

 Elemental charge on the surface of area da-
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 Outside the sphere                    :z R
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Problem # 2:
Find the electric field inside and outside a sphere of radius , which carries
a uniform volume charge density .
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 Using previous results:

 All the points (shells) interior to the given point i.e. smaller than
contribute to the electric filed as all the charge were concentrated at the

centre of the sphere.

While all the exterior shell contribute nothing to the electric field.
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is the total charge interior to the point (interior shells)
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 Outside the sphere :

All charge is interior
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 Inside the sphere  :

Only a fraction of the total charge is interior to the points 
considered
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Problem # 3: Find the electric field at a distance       above the centre of 

a square loop of side       carrying uniform line charge 
z
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 Using results:
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Gauss’s Law: Divergence and Curl of Electrostatics fields 

 Our main job in Electrostatics is to calculate the electric field due a

point charge or charge distribution.

We have seen that the integral involving in calculating electric field due

to a spherical charge distribution is formidable even for reasonably

simple charge distribution.

Here we shall learn some tools and tricks to avoid these integrals.

These are the divergence and Curl of .E




 Before we going to calculate divergence of  directly, we shall discuss it 

qualitatively first.

 Consider a simplest charge distribution, a single point charge  located 
at the origin.
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Representation of this field graphically



Density of field lines
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Flux of the electric field:
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The flux of      through a surface  S which is the number of field lines passing 
through S 
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 For a given sampling rate the flux is proportional to the number of

field lines drawn because the field strength is proportional to the

density of the field line and hence is proportional to the number

of lines passing through the infinitesimal surface area
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 This indicates that the flux through any closed surface is a measure
of the total charge inside.
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And a charge outside the surface will contribute nothing to the flux,
since its field lines pass in one side and out at other.

 Field lines that originate on a positive charge must either pass out
through the surface or terminate on a negative charge inside.

 This is the essence of Gauss’s law.
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Quantitative calculation: 

Example -1:  Consider a point charge q at the origin (for a Spherical 
surface).

The flux of       through a sphere of radius       is E
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 The radius of the sphere cancels out. The field falls off as while the
surface area goes up and so the product is constant.
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In field line picture, the number of filed lines passing through any sphere

centered at the origin, regardless of its size remain same. Hence the flux is

constant.

 Any arbitrary surface, whatever its shape, would contain same number

of field lines. So the flux through any sphere enclosing the charge is
0
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Example -2:  Consider a point charge q at the origin ( for arbitrary shaped 
surface) 

Pre-requisite: Solid Angle
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Angle- Given two intersecting lines or line segments, the amount of rotation

about the point of intersection (the vertex) required to bring one into

correspondence with the other is called the angle between them.

Sometimes it is called plane angle to distinguish it from solid angle.



This constant quantity is called angle subtended by the arc at the centre of 
the circle ( Apex).

So angle is the ratio of subtended arc length on circle to the radius.

A circle has total         radian  angle.2

Solid Angle
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This constant quantity is called an solid angle subtended by the area    
at the centre

A

Here the direction of area vector (     ) 
and radius vector       are same.
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Solid angle is the ratio of subtended area on sphere to radius squared
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The solid angle      subtended by a surface      is defined as the surface area of a 
unit sphere covered by the surface's projection onto the sphere.
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  For a closed surface
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The electric field  at a point due to a single point charge located at the 
origin



Flux of the electric field
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Charge is outside the surface
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Re-entrant surface

 Point charge is inside the re-entrant surface, a cone with its apex at the

point charge intersects the surface an odd number of times

Of these only one cut contribute to the net outward flux. The remaining

even number of cuts contribute nothing since for half of these cuts flux is

outward and for remaining half it is inward, so the sum is zero.

 The charge is outside the re-entrant surface, a cone with its apex at the

point charge intersects the surface an even number of times. Flux is zero.



For many point charges
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So for any closed surface
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So, Gauss’s law states that total outward flux of the electric field

through a closed surface is equal to the total charge enclosed by the

surface divided by the free space permittivity.



Differential equation of Gauss’s law

Applying divergence theorem, we can write
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This is the Gauss’s law in 

differential form.


