DEPARTMENT OF ECONOMICS Vidyasagar College for Women

Economics Honours Part: I Course:Paper II Full Marks:100 Time: 2 hours Date: 6.12.2020

ONLINE INTERNAL ASSESSMENT EXAMINATION 2020

USE SEPARATE PDF(ANSWER SCRIPT) FOR SEPARATE GROUP

Group- A

Answer both questions

1.	(a) Explain the relative advantages and disadvantages of sampling and census methods for	•
	collection of statistical information.	[10]
	(b) State and prove the Bayes' Theorem.	[10]
	(c) Give the classical definition of probability and explain its limitation.	[5]

Please go on to the next page...

Class-limit	105-159	160-169	170-179	180-189	190-199	200-209
Frequency	37	42	69	104	90	83

- (b) The first three moments of distribution about the value 3 of a variable are 2, 10 and 30 respectively. Obtain the first three moments about zero. Find also the variance of the distribution.
- (c) Discuss the concept of Lorenz curve as a representation of distribution of income.
- (d) The first of the two samples has 100 items with mean 15 and standard deviation 3. If the whole group has 250 items with mean 15.6 and standard deviation $\sqrt{13.44}$, find the standard deviation of the second group.

[5]

[8]

[6]

Page 2 of 4

Group- B

Answer both questions

- 3. (a) What is meant by a two person zero sum game?
 - (b) Explain why a constant sum game is also a zero sum game?
 - (c) Consider the following two person zero sum game where the payoff matrix of player A is given as follows:

		B's	strategy
		1	2
$\mathbf{A's}$	1	80	20
strategy	2	40	100

- i. Show that the game does not have a saddle point in pure strategy.
- ii. Hence, determine the mixed strategy equilibrium.

[2] [3]

(d)	Locate all	the	Nash	equilibrium	solutions	for	the	following	game:
< /				*				0	0

		Strategy of player B					
		Left	Center	\mathbf{Right}			
Strategy	Тор	1,0	$1,\!3$	$_{3,0}$			
of	Middle	0,2	0,1	$_{3,0}$			
player A	Bottom	0,2	2,4	5,4			

- 4. (a) A laptop manufacturer determines that in order to sell x laptops, the price must be p = 1200 x. The cost of the manufacturer for producing laptops is C(x) = 4000 + 300x. Find out the optimum number of laptops that will maximise the profits.
 - (b) Classify the stationary values of the function $f(x) = x^3 3x^2 + 5$ as local maximum, local minimum and inflectional values.
 - (c) Consider the following household demand function:

$$\begin{aligned} q^d &= q^d(p,y) = 10y^2 + 2y^4 p^{-2} - 3p^3 \qquad (p,y>0) \\ \text{Derive expression for } q^d{}_y, \quad q^d{}_p, \quad q^d{}_{yy}, \quad q^d{}_{pp}, \quad q^d{}_{py} \quad \& \quad q^d{}_{yp}. \end{aligned} \text{ Given that } q^d(p,y) \text{ is continuous and has continuous first and second order partial derivatives.} \end{aligned}$$

[10]

[10]

[9]

[6]