Vidyasagar College for Women Internal Examination 2020 Mathematics (Hons.) MTMA Part-I Full Marks: 100 Paper-1 Time: 2 Hrs

Group-A

Answer any two questions [2x10]

1. a) If α, β are the roots of $x^2 - 2x \cos x + 1 = 0$, find the equation whose roots are α^n and β^n . (n is a positive integer) b) Express $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ as a sum of a symmetric and skew symmetric matrices. 2. a) Prove without expanding that $\begin{vmatrix} a & d & 3a - 4d \\ b & e & 3b - 4e \\ c & f & 3c - 4f \end{vmatrix} = 0$

- b) State De Moivre's theorem and apply it to express $\cos 3\theta$ in terms of powers of $\cos \theta$ where θ is real.
- 3. a) Express Log(1+i) where $i=\sqrt{-1}$ in the form of A+iB where A,B are real numbers.

b) Show that
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

4.a) Find the rank of A= $\begin{pmatrix} 1 & 5 & 9 \\ 4 & 8 & 12 \\ 7 & 11 & 15 \end{pmatrix}$

b) State when a square matrix A is said to be invertible and state a necessary and sufficient condition under which A will be invertible. Show that $(A^{-1})^{T} = (A^{T})^{-1}$

5. Solve by Cardan Method : $x^2 - 12x + 65 = 0$.

6. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then show that $A^2 = A^{-1}$.

7. Solve the equation $27x^3 + 42x^2 - 28x - 8 = 0$ whose roots are in G.P.

Group-B

Answer any one questions $[1 \times 15]$

- 8. Reduce the equation $9x^2 + 24xy + 16y^2 126x + 82y 59 = 0$ into canonical form and determine the nature of the conic represented by it.
- 9. If the pair of straight lines $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ be such that each pair bisects the angle between the other pair, then prove that pq = -1.

10. *PSP'* and *QSQ'* are two perpendicular focal chords of $\frac{l}{r} = 1 - e \cos \theta$, show that

$$\frac{1}{PP'} + \frac{1}{QQ'} = \frac{2 - e^2}{2l} \,.$$

- 11. When the axes are turned through an angle, the expression ax+by becomes $a_1x + b_1y$ referred to the new axes. Show that $a_1^2 + b_1^2 = a^2 + b^2$ and find the angle of rotation.
- 12. a) If $ax^2+2hxy+by^2$ transforms into $AX^2+2HXY+BY^2$ under rotation of axes then show that a+b=A+B
 - b) Find the angle of rotation about the origin which will transform the equation $x^2-y^2=4$ into x'y'=2

Group-C

- Answer **any two** questions **[2x12]** 13) $y=2\cos x (\sin x \cos x)$ show that $(y_{10})_0 = 2^{10}$

14) If $y = \sin(m\sin^2 x)$, show that $(1-x^2)y_2 - xy_1 + m^2y = 0$ and hence prove that

$$(1 - x^2) y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$$

- 15) Find the angle between $x^2 = 4y$ and $y^2 = 4x$.
- 16. Show that the maximum value of $x^{\frac{1}{x}}$ is $e^{\frac{1}{e}}$.
- 17. Test the series for convergence or divergence

$$\frac{3}{2} + \frac{4}{2^2} + \frac{5}{2^3} + \dots + \frac{n+2}{2^n} + \dots$$

18. A function f(x) is defined in [0, 2] by

$$f(x) = \begin{cases} x^2 + x & \text{for } 0 \le x < 1 \\ 2 & \text{for } x = 1 \\ 2x^3 - x + 1 & \text{for } 1 < x \le 2 \end{cases}$$

Examine the continuity and differentiability of f(x) at x = 1.

19. Show that the maximum rectangle inscribable in a circle is a square.

Group-D

Answer **any two** questions **[2x8]** 20. Given two vectors, $\overset{\rho}{\alpha} = 2\overset{\rho}{i} + \overset{\rho}{j} - 3\overset{\rho}{k}, \overset{\rho}{\beta} = -\overset{\rho}{j} + 3\overset{\rho}{k}$, find a unit vector $\overset{\rho}{\delta}$ which is

coplanar with $\hat{\alpha}$ and $\hat{\beta}$ and perpendicular to $\hat{\gamma} = \hat{i} + \hat{j} - \hat{k}$.

- 21. If $\alpha = 4i + 5j k$, $\beta = i 4j + 5k$ and $\gamma = 3i + j k$, find a vector β which is perpendicular to both $\stackrel{\circ}{\alpha}$, $\stackrel{\circ}{\beta}$ and satisfies the relation $\stackrel{\circ}{\beta}$. $\stackrel{\circ}{\gamma} = 21$.
- A particle being acted on by constant forces -2i + 5j 2k, 3i 4j + k and 6i + j 3k is displaced from the point (2, 0, 1) 22. A to (3, 2, -1). Find the total work done by the forces.
- 23. Prove by vector method that the perpendicular bisectors of the sides of a triangle are concurrent.

Group-E Answer any one questions [1x10]

24) Evaluate
$$\int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x}$$

25) Evaluate
$$\int \frac{dx}{5 + 4\cos x}$$

26. Evaluate
$$\lim_{n \to \infty} \left[\left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \left(1 + \frac{3^2}{n^2} \right) \Lambda \Lambda \left(1 + \frac{n^2}{n^2} \right) \right]^{\frac{1}{n}}.$$

27. Evaluate:
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx.$$

Group-F

28) *Solve any two* of the following differential equations: [15]

a)
$$(x^{2} - yx^{2}) dy + (y^{2} + xy^{2}) dx = 0$$

b) $(2x + 3y - 6) dy = (6x - 2y - 7) dx$
c) $\frac{dy}{dx} + \frac{y}{x} = x^{2}$, given $y = 1$ when $x = 1$.
d) $xdx + y dy + \frac{xdy - ydx}{x^{2} + y^{2}} = 0$.
e) Solve : $\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^{2}} (\log x)^{2}$